oauth2-proxy/pkg/encryption/cipher.go

275 lines
7.5 KiB
Go

package encryption
import (
"crypto/aes"
"crypto/cipher"
"crypto/hmac"
"crypto/rand"
"crypto/sha1"
"crypto/sha256"
"encoding/base64"
"fmt"
"hash"
"io"
"net/http"
"strconv"
"strings"
"time"
)
// SecretBytes attempts to base64 decode the secret, if that fails it treats the secret as binary
func SecretBytes(secret string) []byte {
b, err := base64.RawURLEncoding.DecodeString(strings.TrimRight(secret, "="))
if err == nil {
// Only return decoded form if a valid AES length
// Don't want unintentional decoding resulting in invalid lengths confusing a user
// that thought they used a 16, 24, 32 length string
for _, i := range []int{16, 24, 32} {
if len(b) == i {
return b
}
}
}
// If decoding didn't work or resulted in non-AES compliant length,
// assume the raw string was the intended secret
return []byte(secret)
}
// cookies are stored in a 3 part (value + timestamp + signature) to enforce that the values are as originally set.
// additionally, the 'value' is encrypted so it's opaque to the browser
// Validate ensures a cookie is properly signed
func Validate(cookie *http.Cookie, seed string, expiration time.Duration) (value []byte, t time.Time, ok bool) {
// value, timestamp, sig
parts := strings.Split(cookie.Value, "|")
if len(parts) != 3 {
return
}
if checkSignature(parts[2], seed, cookie.Name, parts[0], parts[1]) {
ts, err := strconv.Atoi(parts[1])
if err != nil {
return
}
// The expiration timestamp set when the cookie was created
// isn't sent back by the browser. Hence, we check whether the
// creation timestamp stored in the cookie falls within the
// window defined by (Now()-expiration, Now()].
t = time.Unix(int64(ts), 0)
if t.After(time.Now().Add(expiration*-1)) && t.Before(time.Now().Add(time.Minute*5)) {
// it's a valid cookie. now get the contents
rawValue, err := base64.URLEncoding.DecodeString(parts[0])
if err == nil {
value = rawValue
ok = true
return
}
}
}
return
}
// SignedValue returns a cookie that is signed and can later be checked with Validate
func SignedValue(seed string, key string, value []byte, now time.Time) string {
encodedValue := base64.URLEncoding.EncodeToString(value)
timeStr := fmt.Sprintf("%d", now.Unix())
sig := cookieSignature(sha256.New, seed, key, encodedValue, timeStr)
cookieVal := fmt.Sprintf("%s|%s|%s", encodedValue, timeStr, sig)
return cookieVal
}
func cookieSignature(signer func() hash.Hash, args ...string) string {
h := hmac.New(signer, []byte(args[0]))
for _, arg := range args[1:] {
h.Write([]byte(arg))
}
var b []byte
b = h.Sum(b)
return base64.URLEncoding.EncodeToString(b)
}
func checkSignature(signature string, args ...string) bool {
checkSig := cookieSignature(sha256.New, args...)
if checkHmac(signature, checkSig) {
return true
}
// TODO: After appropriate rollout window, remove support for SHA1
legacySig := cookieSignature(sha1.New, args...)
return checkHmac(signature, legacySig)
}
func checkHmac(input, expected string) bool {
inputMAC, err1 := base64.URLEncoding.DecodeString(input)
if err1 == nil {
expectedMAC, err2 := base64.URLEncoding.DecodeString(expected)
if err2 == nil {
return hmac.Equal(inputMAC, expectedMAC)
}
}
return false
}
// Cipher provides methods to encrypt and decrypt
type Cipher interface {
Encrypt(value []byte) ([]byte, error)
Decrypt(ciphertext []byte) ([]byte, error)
EncryptInto(s *string) error
DecryptInto(s *string) error
}
type DefaultCipher struct {}
// Encrypt is a dummy method for CommonCipher.EncryptInto support
func (c *DefaultCipher) Encrypt(value []byte) ([]byte, error) { return value, nil }
// Decrypt is a dummy method for CommonCipher.DecryptInto support
func (c *DefaultCipher) Decrypt(ciphertext []byte) ([]byte, error) { return ciphertext, nil }
// EncryptInto encrypts the value and stores it back in the string pointer
func (c *DefaultCipher) EncryptInto(s *string) error {
return into(c.Encrypt, s)
}
// DecryptInto decrypts the value and stores it back in the string pointer
func (c *DefaultCipher) DecryptInto(s *string) error {
return into(c.Decrypt, s)
}
type Base64Cipher struct {
DefaultCipher
Cipher Cipher
}
// NewBase64Cipher returns a new AES Cipher for encrypting cookie values
// and wrapping them in Base64 -- Supports Legacy encryption scheme
func NewBase64Cipher(initCipher func([]byte) (Cipher, error), secret []byte) (Cipher, error) {
c, err := initCipher(secret)
if err != nil {
return nil, err
}
return &Base64Cipher{Cipher: c}, nil
}
// Encrypt encrypts a value with AES CFB & base64 encodes it
func (c *Base64Cipher) Encrypt(value []byte) ([]byte, error) {
encrypted, err := c.Cipher.Encrypt([]byte(value))
if err != nil {
return nil, err
}
return []byte(base64.StdEncoding.EncodeToString(encrypted)), nil
}
// Decrypt Base64 decodes a value & decrypts it with AES CFB
func (c *Base64Cipher) Decrypt(ciphertext []byte) ([]byte, error) {
encrypted, err := base64.StdEncoding.DecodeString(string(ciphertext))
if err != nil {
return nil, fmt.Errorf("failed to base64 decode value %s", err)
}
return c.Cipher.Decrypt(encrypted)
}
type CFBCipher struct {
DefaultCipher
cipher.Block
}
// NewCFBCipher returns a new AES CFB Cipher
func NewCFBCipher(secret []byte) (Cipher, error) {
c, err := aes.NewCipher(secret)
if err != nil {
return nil, err
}
return &CFBCipher{Block: c}, err
}
// Encrypt with AES CFB
func (c *CFBCipher) Encrypt(value []byte) ([]byte, error) {
ciphertext := make([]byte, aes.BlockSize+len(value))
iv := ciphertext[:aes.BlockSize]
if _, err := io.ReadFull(rand.Reader, iv); err != nil {
return nil, fmt.Errorf("failed to create initialization vector %s", err)
}
stream := cipher.NewCFBEncrypter(c.Block, iv)
stream.XORKeyStream(ciphertext[aes.BlockSize:], value)
return ciphertext, nil
}
// Decrypt an AES CFB ciphertext
func (c *CFBCipher) Decrypt(ciphertext []byte) ([]byte, error) {
if len(ciphertext) < aes.BlockSize {
return nil, fmt.Errorf("encrypted value should be at least %d bytes, but is only %d bytes", aes.BlockSize, len(ciphertext))
}
iv := ciphertext[:aes.BlockSize]
ciphertext = ciphertext[aes.BlockSize:]
stream := cipher.NewCFBDecrypter(c.Block, iv)
stream.XORKeyStream(ciphertext, ciphertext)
return ciphertext, nil
}
type GCMCipher struct {
DefaultCipher
cipher.Block
}
// NewGCMCipher returns a new AES GCM Cipher
func NewGCMCipher(secret []byte) (Cipher, error) {
c, err := aes.NewCipher(secret)
if err != nil {
return nil, err
}
return &GCMCipher{Block: c}, err
}
// Encrypt with AES GCM on raw bytes
func (c *GCMCipher) Encrypt(value []byte) ([]byte, error) {
gcm, err := cipher.NewGCM(c.Block)
if err != nil {
return nil, err
}
nonce := make([]byte, gcm.NonceSize())
if _, err = io.ReadFull(rand.Reader, nonce); err != nil {
return nil, err
}
ciphertext := gcm.Seal(nonce, nonce, value, nil)
return ciphertext, nil
}
// Decrypt an AES GCM ciphertext
func (c *GCMCipher) Decrypt(ciphertext []byte) ([]byte, error) {
gcm, err := cipher.NewGCM(c.Block)
if err != nil {
return nil, err
}
nonceSize := gcm.NonceSize()
nonce, ciphertext := ciphertext[:nonceSize], ciphertext[nonceSize:]
plaintext, err := gcm.Open(nil, nonce, ciphertext, nil)
if err != nil {
return nil, err
}
return plaintext, nil
}
// codecFunc is a function that takes a string and encodes/decodes it
type codecFunc func([]byte) ([]byte, error)
func into(f codecFunc, s *string) error {
// Do not encrypt/decrypt nil or empty strings
if s == nil || *s == "" {
return nil
}
d, err := f([]byte(*s))
if err != nil {
return err
}
*s = string(d)
return nil
}