package encryption import ( "crypto/aes" "crypto/cipher" "crypto/hmac" "crypto/rand" "crypto/sha1" "crypto/sha256" "encoding/base64" "fmt" "hash" "io" "net/http" "strconv" "strings" "time" ) // SecretBytes attempts to base64 decode the secret, if that fails it treats the secret as binary func SecretBytes(secret string) []byte { b, err := base64.RawURLEncoding.DecodeString(strings.TrimRight(secret, "=")) if err == nil { // Only return decoded form if a valid AES length // Don't want unintentional decoding resulting in invalid lengths confusing a user // that thought they used a 16, 24, 32 length string for _, i := range []int{16, 24, 32} { if len(b) == i { return b } } } // If decoding didn't work or resulted in non-AES compliant length, // assume the raw string was the intended secret return []byte(secret) } // cookies are stored in a 3 part (value + timestamp + signature) to enforce that the values are as originally set. // additionally, the 'value' is encrypted so it's opaque to the browser // Validate ensures a cookie is properly signed func Validate(cookie *http.Cookie, seed string, expiration time.Duration) (value []byte, t time.Time, ok bool) { // value, timestamp, sig parts := strings.Split(cookie.Value, "|") if len(parts) != 3 { return } if checkSignature(parts[2], seed, cookie.Name, parts[0], parts[1]) { ts, err := strconv.Atoi(parts[1]) if err != nil { return } // The expiration timestamp set when the cookie was created // isn't sent back by the browser. Hence, we check whether the // creation timestamp stored in the cookie falls within the // window defined by (Now()-expiration, Now()]. t = time.Unix(int64(ts), 0) if t.After(time.Now().Add(expiration*-1)) && t.Before(time.Now().Add(time.Minute*5)) { // it's a valid cookie. now get the contents rawValue, err := base64.URLEncoding.DecodeString(parts[0]) if err == nil { value = rawValue ok = true return } } } return } // SignedValue returns a cookie that is signed and can later be checked with Validate func SignedValue(seed string, key string, value []byte, now time.Time) string { encodedValue := base64.URLEncoding.EncodeToString(value) timeStr := fmt.Sprintf("%d", now.Unix()) sig := cookieSignature(sha256.New, seed, key, encodedValue, timeStr) cookieVal := fmt.Sprintf("%s|%s|%s", encodedValue, timeStr, sig) return cookieVal } func cookieSignature(signer func() hash.Hash, args ...string) string { h := hmac.New(signer, []byte(args[0])) for _, arg := range args[1:] { h.Write([]byte(arg)) } var b []byte b = h.Sum(b) return base64.URLEncoding.EncodeToString(b) } func checkSignature(signature string, args ...string) bool { checkSig := cookieSignature(sha256.New, args...) if checkHmac(signature, checkSig) { return true } // TODO: After appropriate rollout window, remove support for SHA1 legacySig := cookieSignature(sha1.New, args...) return checkHmac(signature, legacySig) } func checkHmac(input, expected string) bool { inputMAC, err1 := base64.URLEncoding.DecodeString(input) if err1 == nil { expectedMAC, err2 := base64.URLEncoding.DecodeString(expected) if err2 == nil { return hmac.Equal(inputMAC, expectedMAC) } } return false } // Cipher provides methods to encrypt and decrypt type Cipher interface { Encrypt(value []byte) ([]byte, error) Decrypt(ciphertext []byte) ([]byte, error) EncryptInto(s *string) error DecryptInto(s *string) error } type DefaultCipher struct {} // Encrypt is a dummy method for CommonCipher.EncryptInto support func (c *DefaultCipher) Encrypt(value []byte) ([]byte, error) { return value, nil } // Decrypt is a dummy method for CommonCipher.DecryptInto support func (c *DefaultCipher) Decrypt(ciphertext []byte) ([]byte, error) { return ciphertext, nil } // EncryptInto encrypts the value and stores it back in the string pointer func (c *DefaultCipher) EncryptInto(s *string) error { return into(c.Encrypt, s) } // DecryptInto decrypts the value and stores it back in the string pointer func (c *DefaultCipher) DecryptInto(s *string) error { return into(c.Decrypt, s) } type Base64Cipher struct { DefaultCipher Cipher Cipher } // NewBase64Cipher returns a new AES Cipher for encrypting cookie values // and wrapping them in Base64 -- Supports Legacy encryption scheme func NewBase64Cipher(initCipher func([]byte) (Cipher, error), secret []byte) (Cipher, error) { c, err := initCipher(secret) if err != nil { return nil, err } return &Base64Cipher{Cipher: c}, nil } // Encrypt encrypts a value with AES CFB & base64 encodes it func (c *Base64Cipher) Encrypt(value []byte) ([]byte, error) { encrypted, err := c.Cipher.Encrypt([]byte(value)) if err != nil { return nil, err } return []byte(base64.StdEncoding.EncodeToString(encrypted)), nil } // Decrypt Base64 decodes a value & decrypts it with AES CFB func (c *Base64Cipher) Decrypt(ciphertext []byte) ([]byte, error) { encrypted, err := base64.StdEncoding.DecodeString(string(ciphertext)) if err != nil { return nil, fmt.Errorf("failed to base64 decode value %s", err) } return c.Cipher.Decrypt(encrypted) } type CFBCipher struct { DefaultCipher cipher.Block } // NewCFBCipher returns a new AES CFB Cipher func NewCFBCipher(secret []byte) (Cipher, error) { c, err := aes.NewCipher(secret) if err != nil { return nil, err } return &CFBCipher{Block: c}, err } // Encrypt with AES CFB func (c *CFBCipher) Encrypt(value []byte) ([]byte, error) { ciphertext := make([]byte, aes.BlockSize+len(value)) iv := ciphertext[:aes.BlockSize] if _, err := io.ReadFull(rand.Reader, iv); err != nil { return nil, fmt.Errorf("failed to create initialization vector %s", err) } stream := cipher.NewCFBEncrypter(c.Block, iv) stream.XORKeyStream(ciphertext[aes.BlockSize:], value) return ciphertext, nil } // Decrypt an AES CFB ciphertext func (c *CFBCipher) Decrypt(ciphertext []byte) ([]byte, error) { if len(ciphertext) < aes.BlockSize { return nil, fmt.Errorf("encrypted value should be at least %d bytes, but is only %d bytes", aes.BlockSize, len(ciphertext)) } iv := ciphertext[:aes.BlockSize] ciphertext = ciphertext[aes.BlockSize:] stream := cipher.NewCFBDecrypter(c.Block, iv) stream.XORKeyStream(ciphertext, ciphertext) return ciphertext, nil } type GCMCipher struct { DefaultCipher cipher.Block } // NewGCMCipher returns a new AES GCM Cipher func NewGCMCipher(secret []byte) (Cipher, error) { c, err := aes.NewCipher(secret) if err != nil { return nil, err } return &GCMCipher{Block: c}, err } // Encrypt with AES GCM on raw bytes func (c *GCMCipher) Encrypt(value []byte) ([]byte, error) { gcm, err := cipher.NewGCM(c.Block) if err != nil { return nil, err } nonce := make([]byte, gcm.NonceSize()) if _, err = io.ReadFull(rand.Reader, nonce); err != nil { return nil, err } ciphertext := gcm.Seal(nonce, nonce, value, nil) return ciphertext, nil } // Decrypt an AES GCM ciphertext func (c *GCMCipher) Decrypt(ciphertext []byte) ([]byte, error) { gcm, err := cipher.NewGCM(c.Block) if err != nil { return nil, err } nonceSize := gcm.NonceSize() nonce, ciphertext := ciphertext[:nonceSize], ciphertext[nonceSize:] plaintext, err := gcm.Open(nil, nonce, ciphertext, nil) if err != nil { return nil, err } return plaintext, nil } // codecFunc is a function that takes a string and encodes/decodes it type codecFunc func([]byte) ([]byte, error) func into(f codecFunc, s *string) error { // Do not encrypt/decrypt nil or empty strings if s == nil || *s == "" { return nil } d, err := f([]byte(*s)) if err != nil { return err } *s = string(d) return nil }