Previously, the operator started to move the pods off the nodes to be
decomissioned by watching the eol_node_label value. Every new postgres
pod has been created with the anti-affinity to that label, making sure
that the pods being moved won't land on another to be decomissioned
node.
The changes introduce another label that indicates the ready node. The
new pod affinity will esnure that the pod is only scheduled to the node
marked as ready, discarding the previous anti-affinity. That way the
nodes can transition from the pending-decomission to the other statuses
(drained, terminating) without having pods suddently scaled to them.
In addition, rename the label that triggers the start of the upgrade
process to node_eol_label (for consistency with node_readiness_label)
and set its default vvalue to lifecycle-status:pending-decomission.
* client-go v4.0.0-beta0
* remove unnecessary methods for tpr object
* rest client: use interface instead of structure pointer
* proper names for constants; some clean up for log messages
* remove teams api client from controller and make it per cluster
- Avoid relying on Clientset structure to call Kubernetes API functions.
While Clientset is a convinient "catch-all" abstraction for calling
REST API related to different Kubernetes objects, it's impossible to
mock. Replacing it wih the kubernetes.Interface would be quite
straightforward, but would require an exra level of mocked interfaces,
because of the versioning. Instead, a new interface is defined, which
contains only the objects we need of the pre-defined versions.
- Move KubernetesClient to k8sutil package.
- Add more tests.
The flag adds a replica service with the name cluster_name-repl and
a DNS name that defaults to {cluster}-repl.{team}.{hostedzone}.
The implementation converted Service field of the cluster into a map
with one or two elements and deals with the cases when the new flag
is changed on a running cluster
(the update and the sync should create or delete the replica service).
In order to pick up master and replica service and master endpoint
when listing cluster resources.
* Update the spec when updating the cluster.
In order to support volumes different from EBS and filesystems other than EXT2/3/4 the respective code parts were implemented as interfaces. Adding the new resize for the volume or the filesystem will require implementing the interface, but no other changes in the cluster code itself.
Volume resizing first changes the EBS and the filesystem, and only afterwards is reflected in the Kubernetes "PersistentVolume" object. This is done deliberately to be able to check if the volume needs resizing by peeking at the Size of the PersistentVolume structure. We recheck, nevertheless, in the EBSVolumeResizer, whether the actual EBS volume size doesn't match the spec, since call to the AWS ModifyVolume is counted against the resize limit of once every 6 hours, even for those calls that shouldn't result in an actual resize (i.e. when the size matches the one for the running volume).
As a collateral, split the constants into multiple files, move the volume code into a separate file and fix minor issues related to the error reporting.
Command-line options --nodatabaseaccess and --noteamsapi disable all
teams api interaction and access to the Postgres database. This is
useful for debugging purposes when the operator runs out of cluster
(with --outofcluster flag).
The same effect can be achieved by setting enable_db_access and/or
enable_teams_api to false.