Client-go provides a https://github.com/kubernetes/code-generator package in order to provide the API to work with CRDs similar to the one available for built-in types, i.e. Pods, Statefulsets and so on.
Use this package to generate deepcopy methods (required for CRDs), instead of using an external deepcopy package; we also generate APIs used to manipulate both Postgres and OperatorConfiguration CRDs, as well as informers and listers for the Postgres CRD, instead of using generic informers and CRD REST API; by using generated code we can get rid of some custom and obscure CRD-related code and use a better API.
All generated code resides in /pkg/generated, with an exception of zz_deepcopy.go in apis/acid.zalan.do/v1
Rename postgres-operator-configuration CRD to OperatorConfiguration, since the former broke naming convention in the code-generator.
Moved Postgresql, PostgresqlList, OperatorConfiguration and OperatorConfigurationList and other types used by them into
Change the type of the Error field in the Postgresql crd to a string, so that client-go could generate a deepcopy for it.
Use generated code to set status of CRD objects as well. Right now this is done with patch, however, Kubernetes 1.11 introduces the /status subresources, allowing us to set the status with
the special updateStatus call in the future. For now, we keep the code that is compatible with earlier versions of Kubernetes.
Rename postgresql.go to database.go and status.go to logs_and_api.go to reflect the purpose of each of those files.
Update client-go dependencies.
Minor reformatting and renaming.
Previously, the operator put pg_hba into the bootstrap/pg_hba key of
Patroni. That had 2 adverse effects:
- pg_hba.conf was shadowed by Spilo default section in the local
postgresql configuration
- when updating pg_hba in the cluster manifest, the updated lines were
not propagated to DCS, since the key was defined in the boostrap
section of Patroni.
Include some minor refactoring, moving methods to unexported when
possible and commenting out usage of md5, so that gosec won't complain.
Per https://github.com/zalando-incubator/postgres-operator/issues/330
Review by @zerg-junior
* Allow configuring pod priority globally and per cluster.
Allow to specify pod priority class for all pods managed by the operator,
as well as for those belonging to individual clusters.
Controlled by the pod_priority_class_name operator configuration
parameter and the podPriorityClassName manifest option.
See https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
for the explanation on how to define priority classes since Kubernetes 1.8.
Some import order changes are due to go fmt.
Removal of OrphanDependents deprecated field.
Code review by @zerg-junior
There are shortcuts in this code, i.e. we created the deepcopy function
by using the deepcopy package instead of the generated code, that will
be addressed once migrated to client-go v8. Also, some objects,
particularly statefulsets, are still taken from v1beta, this will also
be addressed in further commits once the changes are stabilized.
* Up until now, the operator read its own configuration from the
configmap. That has a number of limitations, i.e. when the
configuration value is not a scalar, but a map or a list. We use a
custom code based on github.com/kelseyhightower/envconfig to decode
non-scalar values out of plain text keys, but that breaks when the data
inside the keys contains both YAML-special elememtns (i.e. commas) and
complex quotes, one good example for that is search_path inside
`team_api_role_configuration`. In addition, reliance on the configmap
forced a flag structure on the configuration, making it hard to write
and to read (see
https://github.com/zalando-incubator/postgres-operator/pull/308#issuecomment-395131778).
The changes allow to supply the operator configuration in a proper YAML
file. That required registering a custom CRD to support the operator
configuration and provide an example at
manifests/postgresql-operator-default-configuration.yaml. At the moment,
both old configmap and the new CRD configuration is supported, so no
compatibility issues, however, in the future I'd like to deprecate the
configmap-based configuration altogether. Contrary to the
configmap-based configuration, the CRD one doesn't embed defaults into
the operator code, however, one can use the
manifests/postgresql-operator-default-configuration.yaml as a starting
point in order to build a custom configuration.
Since previously `ReadyWaitInterval` and `ReadyWaitTimeout` parameters
used to create the CRD were taken from the operator configuration, which
is not possible if the configuration itself is stored in the CRD object,
I've added the ability to specify them as environment variables
`CRD_READY_WAIT_INTERVAL` and `CRD_READY_WAIT_TIMEOUT` respectively.
Per review by @zerg-junior and @Jan-M.
* Improve the pod moving behavior during the Kubernetes cluster upgrade.
Fix an issue of not waiting for at least one replica to become ready
(if the Statefulset indicates there are replicas) when moving the master
pod off the decomissioned node. Resolves the first part of #279.
Small fixes to error messages.
* Eliminate a race condition during the swithover.
When the operator initiates the failover (switchover) that fails and
then retries it for a second time it may happen that the previous
waitForPodChannel is still active. As a result, the operator subscribes
to the former master pod two times, causing a panic.
The problem was that the original code didn't bother to cancel the
waitForPodLalbel for the new master pod in the case when the failover
fails. This commit fixes it by adding a stop channel to that function.
Code review by @zerg-junior
Compare pods controller revisions with the one for the statefulset
to determine whether the pod is running the latest revision and,
therefore, no rolling update is necessary. This is performed only
during the operator start, afterwards the rolling update status
that is stored locally in the cluster structure is used for all
rolling update decisions.
* Remove 'team' label from the statefulset selector.
I was never supposed to be there, but implicitely statefulset
creates a selector out of meta.labels field. That is the problem
with recent Kubernetes, since statefulset cannot pick up pods
with non-matching label selectors, and we rely on statefulset
picking up old pods after statefulset replacement.
Make sure selector changes trigger replacement of the statefulset.
In the case new selector has more labels than the old one nothing
should be done with a statefulset, otherwise the new statefulset
won't see orphaned pods from the old one, as they won't match the
selector.
See https://github.com/kubernetes/kubernetes/issues/46901#issuecomment-356418393
There used to be a masterLess flag that was supposed to indicate whether the cluster it belongs to runs without the acting master by design. At some point, as we didn't really have support for such clusters, the flag has been misused to indicate there is no master in the cluster. However, that was not done consistently (a cluster without all pods running would never be masterless, even when the master is not among the running pods) and it was based on the wrong assumption that the masterless cluster will remain masterless until the next attempt to change that flag, ignoring the possibility of master coming up or some node doing a successful promotion. Therefore, this PR gets rid of that flag completely.
When the cluster is running with 0 instances, there is obviously no master and it makes no sense to create any database objects inside the non-existing master. Therefore, this PR introduces an additional check for that.
recreatePods were assuming that the roles of the pods recorded when the function has stared will not change; for instance, terminated replica pods should start as replicas. Revisit that assumption by looking at the actual role of the re-spawned pods; that avoids a failover if some replica has promoted to the master role while being re-spawned. In addition, if the failover from the old master was unsuccessful, we used to stop and leave the old master running on an old pod, without recording this fact anywhere. This PR makes the failover failure emit a warning, but not stop recreating the last master pod; in the worst case, the running master will be terminated, however, this case is rather unlikely one.
As a side effect, make waitForPodLabel return the pod definition it waited for, avoiding extra API calls in recreatePods and movePodFromEndOfLifeNode
Introduce a new lock called specMu lock to protect the cluster spec.
This lock is held on update and sync, and when retrieving the spec in
the API code. There is no need to acquire it for cluster creation and
deletion: creation assigns the spec to the cluster before linking it to
the controller, and deletion just removes the cluster from the list in
the controller, both holding the global clustersMu Lock.
* Avoid overwriting critical users.
Disallow defining new users either in the cluster manifest, teams
API or infrastructure roles with the names mentioned in the new
protected_role_names parameter (list of comma-separated names)
Additionally, forbid defining a user with the name matching either
super_username or replication_username, so that we don't overwrite
system roles required for correct working of the operator itself.
Also, clear PostgreSQL roles on each sync first in order to avoid using
the old definitions that are no longer present in the current manifest,
infrastructure roles secret or the teams API.
Be more rigorous about validating user flags.
Only accept CREATE ROLE flags that doesn't have any params (i.e.
not ADMIN or CONNECTION LIMIT). Check that both flag and NOflag
are not used at the same time.
Allow cloning clusters from the operator.
The changes add a new JSON node `clone` with possible values `cluster`
and `timestamp`. `cluster` is mandatory, and setting a non-empty
`timestamp` triggers wal-e point in time recovery. Spilo and Patroni do
the whole heavy-lifting, the operator just defines certain variables and
gathers some data about how to connect to the host to clone or the
target S3 bucket.
As a minor change, set the image pull policy to IfNotPresent instead
of Always to simplify local testing.
Change the default replication username to standby.
* client-go v4.0.0-beta0
* remove unnecessary methods for tpr object
* rest client: use interface instead of structure pointer
* proper names for constants; some clean up for log messages
* remove teams api client from controller and make it per cluster
* Deny all requests to the load balancer by default.
* Operator-wide toggle for the load-balancer.
* Define per-cluster useLoadBalancer option.
If useLoadBalancer is not set - then operator-wide defaults take place. If it
is true - the load balancer is created, otherwise a service type clusterIP is
created.
Internally, we have to completely replace the service if the service type
changes. We cannot patch, since some fields from the old service that will
remain after patch are incompatible with the new one, and handling them
explicitly when updating the service is ugly and error-prone. We cannot
update the service because of the immutable fields, that leaves us the only
option of deleting the old service and creating the new one. Unfortunately,
there is still an issue of unnecessary removal of endpoints associated with
the service, it will be addressed in future commits.
* Revert the unintended effect of go fmt
* Recreate endpoints on service update.
When the service type is changed, the service is deleted and then
the one with the new type is created. Unfortnately, endpoints are
deleted as well. Re-create them afterwards, preserving the original
addresses stored in them.
* Improve error messages and comments. Use generate instead of gen in names.
In case the whole annotation changes (like the external DNS) we
don't want to keep the old one hanging around. Unline specs, we
don't expect anyone except the operator to change the annotations.
Use StrategicMergePatchType in order to replace the annotations
map completely.
The flag adds a replica service with the name cluster_name-repl and
a DNS name that defaults to {cluster}-repl.{team}.{hostedzone}.
The implementation converted Service field of the cluster into a map
with one or two elements and deals with the cases when the new flag
is changed on a running cluster
(the update and the sync should create or delete the replica service).
In order to pick up master and replica service and master endpoint
when listing cluster resources.
* Update the spec when updating the cluster.