* Define sidecars in the operator configuration.
Right now only the name and the docker image can be defined, but with
the help of the pod_environment_configmap parameter arbitrary
environment variables can be passed to the sidecars.
* Refactoring around generatePodTemplate.
Original implementation of per-cluster sidecars by @theRealWardo
Per review by @zerg-junior and @Jan-M
Call Patroni API /config in order to set special options that are
ignored when set in the configuration file, such as max_connections.
Per https://github.com/zalando-incubator/postgres-operator/issues/297
* Some minor refacoring:
Rename Cluster ManualFailover to Swithover
Rename Patroni Failover to Switchover
Add more details to error messages and comments introduced in this PR.
Review by @zerg-junior
* Depreate old LB options, fix endpoint sync.
- deprecate useLoadBalancer, replicaLoadBalancer from the manifest
and enable_load_balancer from the operator configuration. The old
operator configuration options become no-op with this commit. For
the old manifest options, `useLoadBalancer` and `replicaLoadBalancer`
are still consulted, but only in the absense of the new ones
(enableMasterLoadBalancer and enableReplicaLoadBalancer).
- Make sure the endpoint being created during the sync receives proper
addresses subset. This is more critical for the replicas, as for the
masters Patroni will normally re-create the endpoint before the
operator.
- Avoid creating the replica endpoint, since it will be created automatically
by the corresponding service.
- Update the README and unit tests.
Code review by @mgomezch and @zerg-junior
There used to be a masterLess flag that was supposed to indicate whether the cluster it belongs to runs without the acting master by design. At some point, as we didn't really have support for such clusters, the flag has been misused to indicate there is no master in the cluster. However, that was not done consistently (a cluster without all pods running would never be masterless, even when the master is not among the running pods) and it was based on the wrong assumption that the masterless cluster will remain masterless until the next attempt to change that flag, ignoring the possibility of master coming up or some node doing a successful promotion. Therefore, this PR gets rid of that flag completely.
When the cluster is running with 0 instances, there is obviously no master and it makes no sense to create any database objects inside the non-existing master. Therefore, this PR introduces an additional check for that.
recreatePods were assuming that the roles of the pods recorded when the function has stared will not change; for instance, terminated replica pods should start as replicas. Revisit that assumption by looking at the actual role of the re-spawned pods; that avoids a failover if some replica has promoted to the master role while being re-spawned. In addition, if the failover from the old master was unsuccessful, we used to stop and leave the old master running on an old pod, without recording this fact anywhere. This PR makes the failover failure emit a warning, but not stop recreating the last master pod; in the worst case, the running master will be terminated, however, this case is rather unlikely one.
As a side effect, make waitForPodLabel return the pod definition it waited for, avoiding extra API calls in recreatePods and movePodFromEndOfLifeNode
Previously, it was set to the lifecycle-status:ready, breaking a
lot of minikube deployments. Also it was not possible befor to run
with this label set to an empty value.
Document the effect of the label in the new section of the
documentation.
* Trigger the node migration on the lack of the readiness label.
* Examine the node's readiness status on node add.
Make sure we don't miss the not ready node, especially when the
operator is killed during the migration.
* Scalyr agent sidecar for log shipping
* Remove the default for the Scalyr image
Now the image needs to be specified explicitly to enable log shipping to
Scalyr. This removes the problem of having to generate the config file
or publish our agent image repository.
* Add configuration variable for Scalyr server URL
Defaults to the EU address.
* Alter style
Newlines are cheap and make code easier to edit/refactor, but ok.
* Fix StatefulSet comparison logic
I broke it when I made the comparison consider all containers in the
PostgreSQL pod.
* Introduce higher and lower bounds for the number of instances
Reduce the number of instances to the min_instances if it is lower and
to the max_instances if it is higher. -1 for either of those means there
is no lower or upper bound.
In addition, terminate the operator when there is a nonsense in the
configuration (i.e. max_instances < min_instances).
Reviewed by Jan Mußler and Sergey Dudoladov.
- make sure that the secrets for the system users (superuser, replication)
are not deleted when the main cluster is. Therefore, we can re-create
the cluster, potentially forcing Patroni to restore it from the backup
and enable Patroni to connect, since it will use the old password, not
the newly generated random one.
- when syncing users, always check whether they are already in the DB.
Previously, we did this only for the sync cluster case, but the new
cluster could be actually the one restored from the backup by Patroni,
having all or some of the users already in place.
- delete endponts last. Patroni uses the $clustername endpoint in order
to store the leader related metadata. If we remove it before removing
all pods, one of those pods running Patroni will re-create it and the
next attempt to create the cluster with the same name will stuble on
the existing endpoint.
- Use db.Exec instead of db.Query for queries that expect no result.
This also fixes the issue with the DB creation, since we didn't
release an empty Row object it was not possible to create more than
one database for a cluster.
* Avoid overwriting critical users.
Disallow defining new users either in the cluster manifest, teams
API or infrastructure roles with the names mentioned in the new
protected_role_names parameter (list of comma-separated names)
Additionally, forbid defining a user with the name matching either
super_username or replication_username, so that we don't overwrite
system roles required for correct working of the operator itself.
Also, clear PostgreSQL roles on each sync first in order to avoid using
the old definitions that are no longer present in the current manifest,
infrastructure roles secret or the teams API.
Previously, the operator started to move the pods off the nodes to be
decomissioned by watching the eol_node_label value. Every new postgres
pod has been created with the anti-affinity to that label, making sure
that the pods being moved won't land on another to be decomissioned
node.
The changes introduce another label that indicates the ready node. The
new pod affinity will esnure that the pod is only scheduled to the node
marked as ready, discarding the previous anti-affinity. That way the
nodes can transition from the pending-decomission to the other statuses
(drained, terminating) without having pods suddently scaled to them.
In addition, rename the label that triggers the start of the upgrade
process to node_eol_label (for consistency with node_readiness_label)
and set its default vvalue to lifecycle-status:pending-decomission.
- fix the lack of closing the cursor for the query that returned no
rows.
- fix syncing of the user options, as previously those were not
fetched from the database.
- search_path accepts a list of values that cannot be quoted, as
quoting would make PostgreSQL interpret the result as a single
value. Since we require quoting of values with commas in the
operator's configMap in order to avoid confusing them with the
separate map entities, we need to strip those quotes before
passing the value to PostgreSQL.
- make ftm run
A value in a configMap that is a map itself
(a key:value string separated by commas) may include commans inside
quotes (i.e. search_path:"public,"$user"). The changes make marshaling
code process such cases correctly.
Add options to the PgUser structure, potentially allowing to set
per-role options in the cluster definition as well.
Introduce api_roles_configuration operator option with the default
of log_statement=all
* Add node toleration config to PodSpec
This allows to taint nodes dedicated to Postgres and prevents other pods from running on these nodes.
* Document taint and toleration setup
And remove setting from default operator ConfigMap
* Allow to overwrite tolerations with Postgres manifest
Be more rigorous about validating user flags.
Only accept CREATE ROLE flags that doesn't have any params (i.e.
not ADMIN or CONNECTION LIMIT). Check that both flag and NOflag
are not used at the same time.
Allow cloning clusters from the operator.
The changes add a new JSON node `clone` with possible values `cluster`
and `timestamp`. `cluster` is mandatory, and setting a non-empty
`timestamp` triggers wal-e point in time recovery. Spilo and Patroni do
the whole heavy-lifting, the operator just defines certain variables and
gathers some data about how to connect to the host to clone or the
target S3 bucket.
As a minor change, set the image pull policy to IfNotPresent instead
of Always to simplify local testing.
Change the default replication username to standby.
* client-go v4.0.0-beta0
* remove unnecessary methods for tpr object
* rest client: use interface instead of structure pointer
* proper names for constants; some clean up for log messages
* remove teams api client from controller and make it per cluster
- Avoid relying on Clientset structure to call Kubernetes API functions.
While Clientset is a convinient "catch-all" abstraction for calling
REST API related to different Kubernetes objects, it's impossible to
mock. Replacing it wih the kubernetes.Interface would be quite
straightforward, but would require an exra level of mocked interfaces,
because of the versioning. Instead, a new interface is defined, which
contains only the objects we need of the pre-defined versions.
- Move KubernetesClient to k8sutil package.
- Add more tests.
* Deny all requests to the load balancer by default.
* Operator-wide toggle for the load-balancer.
* Define per-cluster useLoadBalancer option.
If useLoadBalancer is not set - then operator-wide defaults take place. If it
is true - the load balancer is created, otherwise a service type clusterIP is
created.
Internally, we have to completely replace the service if the service type
changes. We cannot patch, since some fields from the old service that will
remain after patch are incompatible with the new one, and handling them
explicitly when updating the service is ugly and error-prone. We cannot
update the service because of the immutable fields, that leaves us the only
option of deleting the old service and creating the new one. Unfortunately,
there is still an issue of unnecessary removal of endpoints associated with
the service, it will be addressed in future commits.
* Revert the unintended effect of go fmt
* Recreate endpoints on service update.
When the service type is changed, the service is deleted and then
the one with the new type is created. Unfortnately, endpoints are
deleted as well. Re-create them afterwards, preserving the original
addresses stored in them.
* Improve error messages and comments. Use generate instead of gen in names.
The flag adds a replica service with the name cluster_name-repl and
a DNS name that defaults to {cluster}-repl.{team}.{hostedzone}.
The implementation converted Service field of the cluster into a map
with one or two elements and deals with the cases when the new flag
is changed on a running cluster
(the update and the sync should create or delete the replica service).
In order to pick up master and replica service and master endpoint
when listing cluster resources.
* Update the spec when updating the cluster.
In order to support volumes different from EBS and filesystems other than EXT2/3/4 the respective code parts were implemented as interfaces. Adding the new resize for the volume or the filesystem will require implementing the interface, but no other changes in the cluster code itself.
Volume resizing first changes the EBS and the filesystem, and only afterwards is reflected in the Kubernetes "PersistentVolume" object. This is done deliberately to be able to check if the volume needs resizing by peeking at the Size of the PersistentVolume structure. We recheck, nevertheless, in the EBSVolumeResizer, whether the actual EBS volume size doesn't match the spec, since call to the AWS ModifyVolume is counted against the resize limit of once every 6 hours, even for those calls that shouldn't result in an actual resize (i.e. when the size matches the one for the running volume).
As a collateral, split the constants into multiple files, move the volume code into a separate file and fix minor issues related to the error reporting.