Run operations concerning multiple clusters in parallel. Each cluster gets its
own worker in order to create, update, sync or delete clusters. Each worker
acquires the lock on a cluster. Subsequent operations on the same cluster
have to wait until the current one finishes. There is a pool of parallel
workers, configurable with the `workers` parameter in the configmap and set by
default to 4. The cluster-related tasks are assigned to the workers based on
a cluster name: the tasks for the same cluster will be always assigned to the
same worker. There is no blocking between workers, although there is a chance
that a single worker will become a bottleneck if too many clusters are
assigned to it; therefore, for large-scale deployments it might be necessary
to bump up workers from the default value.
Conceptually, the operator's task is just to change the pod. As it
has no influence over the role the pod will take (either the master
or a replica), it shouldn't wait for the specific role.
This fixes at least one issue, where the pod running in a single-pod
cluster has been waited for forever by the operator expecting it to
have a wrong role (since Patroni callback assiging it the original
replica role has been killed after a quick promote by the next
callback.)
* move statefulset creation from cluster spec to the separate function
* sync cluster state with desired state;
* move out from arrays for cluster resources;
* recreate pods instead of deleting them in case of statefulset change
* check for master while creating cluster/updating pods
* simplify retryutil
* list pvc while listing resources
* name kubernetes resources with capital letter
* do rolling update in case of env variables change
introduce Pod events channel;
add parsing of the MaintenanceWindows section;
skip deleting Etcd key on cluster delete;
use external etcd host;
watch for tpr/pods in the namespace of the operator pod only;