Introduce a new lock called specMu lock to protect the cluster spec.
This lock is held on update and sync, and when retrieving the spec in
the API code. There is no need to acquire it for cluster creation and
deletion: creation assigns the spec to the cluster before linking it to
the controller, and deletion just removes the cluster from the list in
the controller, both holding the global clustersMu Lock.
* Scalyr agent sidecar for log shipping
* Remove the default for the Scalyr image
Now the image needs to be specified explicitly to enable log shipping to
Scalyr. This removes the problem of having to generate the config file
or publish our agent image repository.
* Add configuration variable for Scalyr server URL
Defaults to the EU address.
* Alter style
Newlines are cheap and make code easier to edit/refactor, but ok.
* Fix StatefulSet comparison logic
I broke it when I made the comparison consider all containers in the
PostgreSQL pod.
* Make sure the statefulset that is deleted manually gets re-created.
Per report and analysis by Manuel Gomez.
* Move the existence checks for other objects out of the Create functions.
create{Object} for services, endpoints and PDBs refused to continue if
there is a cached definition in the cluster, however, the only place
where it makes sense is when creating a new cluster. Note that contrary
to the statefulset this doesn't fix any issues, since those definitions
were nullified correspondingly when the sync code detected there is no
object present in the Kubernetes cluster.
- make sure that the secrets for the system users (superuser, replication)
are not deleted when the main cluster is. Therefore, we can re-create
the cluster, potentially forcing Patroni to restore it from the backup
and enable Patroni to connect, since it will use the old password, not
the newly generated random one.
- when syncing users, always check whether they are already in the DB.
Previously, we did this only for the sync cluster case, but the new
cluster could be actually the one restored from the backup by Patroni,
having all or some of the users already in place.
- delete endponts last. Patroni uses the $clustername endpoint in order
to store the leader related metadata. If we remove it before removing
all pods, one of those pods running Patroni will re-create it and the
next attempt to create the cluster with the same name will stuble on
the existing endpoint.
- Use db.Exec instead of db.Query for queries that expect no result.
This also fixes the issue with the DB creation, since we didn't
release an empty Row object it was not possible to create more than
one database for a cluster.
* Avoid overwriting critical users.
Disallow defining new users either in the cluster manifest, teams
API or infrastructure roles with the names mentioned in the new
protected_role_names parameter (list of comma-separated names)
Additionally, forbid defining a user with the name matching either
super_username or replication_username, so that we don't overwrite
system roles required for correct working of the operator itself.
Also, clear PostgreSQL roles on each sync first in order to avoid using
the old definitions that are no longer present in the current manifest,
infrastructure roles secret or the teams API.
When a role is defined in the infrastructure roles and the cluster
manifest use the infrastructure role definition and add flags
defined in the manifest.
Previously the role has been overwritten by the definition from the
manifest. Because a random password is generated for each role from the
manifest the applications relying on the infrastructure role credentials
from the infrastructure roles secret were unable to connect.
Add options to the PgUser structure, potentially allowing to set
per-role options in the cluster definition as well.
Introduce api_roles_configuration operator option with the default
of log_statement=all
- Call comparison function in the case of the sync as well as for update
- Include full cluster name in PDB name
- Assign cluster labels to the PDB object
Open and close DB connections on-demand.
Previously, we used to leave the DB connection open while the
cluster was registered with the operator, potentially resutling
in dangled connections if the operator terminates abnormally.
Small refactoring around the role syncing code.
* client-go v4.0.0-beta0
* remove unnecessary methods for tpr object
* rest client: use interface instead of structure pointer
* proper names for constants; some clean up for log messages
* remove teams api client from controller and make it per cluster
- Avoid relying on Clientset structure to call Kubernetes API functions.
While Clientset is a convinient "catch-all" abstraction for calling
REST API related to different Kubernetes objects, it's impossible to
mock. Replacing it wih the kubernetes.Interface would be quite
straightforward, but would require an exra level of mocked interfaces,
because of the versioning. Instead, a new interface is defined, which
contains only the objects we need of the pre-defined versions.
- Move KubernetesClient to k8sutil package.
- Add more tests.
* Deny all requests to the load balancer by default.
* Operator-wide toggle for the load-balancer.
* Define per-cluster useLoadBalancer option.
If useLoadBalancer is not set - then operator-wide defaults take place. If it
is true - the load balancer is created, otherwise a service type clusterIP is
created.
Internally, we have to completely replace the service if the service type
changes. We cannot patch, since some fields from the old service that will
remain after patch are incompatible with the new one, and handling them
explicitly when updating the service is ugly and error-prone. We cannot
update the service because of the immutable fields, that leaves us the only
option of deleting the old service and creating the new one. Unfortunately,
there is still an issue of unnecessary removal of endpoints associated with
the service, it will be addressed in future commits.
* Revert the unintended effect of go fmt
* Recreate endpoints on service update.
When the service type is changed, the service is deleted and then
the one with the new type is created. Unfortnately, endpoints are
deleted as well. Re-create them afterwards, preserving the original
addresses stored in them.
* Improve error messages and comments. Use generate instead of gen in names.
The flag adds a replica service with the name cluster_name-repl and
a DNS name that defaults to {cluster}-repl.{team}.{hostedzone}.
The implementation converted Service field of the cluster into a map
with one or two elements and deals with the cases when the new flag
is changed on a running cluster
(the update and the sync should create or delete the replica service).
In order to pick up master and replica service and master endpoint
when listing cluster resources.
* Update the spec when updating the cluster.
In order to support volumes different from EBS and filesystems other than EXT2/3/4 the respective code parts were implemented as interfaces. Adding the new resize for the volume or the filesystem will require implementing the interface, but no other changes in the cluster code itself.
Volume resizing first changes the EBS and the filesystem, and only afterwards is reflected in the Kubernetes "PersistentVolume" object. This is done deliberately to be able to check if the volume needs resizing by peeking at the Size of the PersistentVolume structure. We recheck, nevertheless, in the EBSVolumeResizer, whether the actual EBS volume size doesn't match the spec, since call to the AWS ModifyVolume is counted against the resize limit of once every 6 hours, even for those calls that shouldn't result in an actual resize (i.e. when the size matches the one for the running volume).
As a collateral, split the constants into multiple files, move the volume code into a separate file and fix minor issues related to the error reporting.